

Acknowledge

"Injuries to Runners"

James et al. , 1978

- Stan James, M.D.
- et: Barry Bates, Ph.D.
- al: Lou Osternig, Ph.D.

Recipients

- John Cooper, Ph.D.
- Barry Bates, Ph.D.
- Bruce Mason, Ph.D.
- Joe Hamill, Ph.D.

Accommodating Strategies

for

Preventing Chronic Lower Extremity Injuries

Barry T. Bates, Ph.D.

WHY ?		
INJURY :	PREVENT	
INJURY:	REHABILITATION	
PERFORMA	NCE: ENHANCI	

RUNNING is "VIOLENT"

Is There a Difference ?

INJURY STATISTICS: RUNNING

KOPLAN et al, 1982	35%
LYSHOLM et al, 1987	65%
MARTI et al, 1988	46%
WALTER et al, 1989	48%
van MECHELEN, 1992	50%
ASPLUND, TANNER, 2004	50%

JAMES et al, 1978

- **Training Errors (60%)**
 - **Shoes and Surfaces**
 - **Anatomic Factors**

AOSSM, 2008

Training Errors

Shoes, Surfaces, Weather

Anatomic Abnormalities

SHOE RESEARCH RESULTS

VS

SHOES CAUSE INJURIES ?

JAMES et al, 1978

Training Errors (60%)

→ Shoes and Surfaces

Anatomic Factors

AOSSM, 2008

Training Errors

→ Shoes, Surfaces, Weather

Anatomic Abnormalities

Final Comment

"... propositions about people cannot necessarily be derived from propositions about the mean of people ..."

Bouffard, 1993, p.371

HOW HAS BIOMECHANICS CONTRIBUTED?

BIOMECHANICS

FIRST STEP TO GAINING UNDERSTANDING / INSIGHT

	INJURY
CAUSE: HOW:	FORCE / STRESS CHANGE
CURE:	FORCE / STRESS REDUCTION
HOW:	CHANGE

	INJURY
CAUSE:	FORCE / STRESS
HOW:	CHANGE
PREVENT:	FORCE / STRESS
HOW:	CHANGE FORCE
	MAGNITUDE DIDECTION

Insights on Injury

Prevention Rehabilitation = f (Patience)

Patience = f (Controlled Change)

"The human system is functionally pliable in that changes (eg. volition, perception, learning, growth and development, etc.) are possible within the bounds of imposed constraints."

James & Bates, 1996

Load sufficiently to get the physiological response / accommodation for specific activity (increase acute threshold)

Vary load enough to avoid cumulative stress / injury (increase chronic threshold)

Remember: Training Errors (60%) (James et al., 1978) Too fast a change in too short a period of time

"We are all creatures of experience turning into memory"

(mentally and physically)

Experiences

Memories

Perceptions and

Expectations

Assumptions

Thoughts and

Actions

Movement Constraints

- Morphological
- Environmental
- Bio/Mechanical

★ Task

Movement

A Tool for problem solving, i.e. accomplishing a Task

(time, space & n-m-s system)

Constrained by:

Morphology

Environment

Bio/Mechanics

Strategy

Selected

Neuro- Musculo -Skeletal Solution

For the Performance of a Motor Task

	INJURY
CAUSE:	FORCE / STRESS
HOW:	CHANGE FORCE
PREVENT:	FORCE / STRESS
HOW:	CHANGE FORCE
HOW:	MAGNITUDE. DIRECTION

How do we change the force factor (magnitude and/or direction)?

Variations within activity (changing shoes, terrain, footstrike, knee angle, etc.)

Variations by changing activity (cross training)

How do we change the force factor (magnitude and/or direction)?

Change the environment, i.e. shoes, surface, terrain, etc.

Change performance characteristics, i.e. footstrike, knee angle, etc.

Change the activity, i.e. running, cycling, crosstraining, etc.

How do we change the force factor (magnitude and/or direction)?

Change the environment, i.e. shoes, surface, terrain, etc.

Change performance characteristics, i.e. footstrike, knee angle, etc.

Change the activity, i.e. running, cycling, crosstraining, etc.

Take Home Lesson 2

Prevention Rehabilitation } = f (Patience)

Patience = f (Controlled Change)

Some Final Suggestions

- Have Appropriate Goals
- Train/Exercise Smart
- Get Adequate Rest
- Don't Ignore Pain
- Think Prevention
- Have Fun

